

Towards a Scientific Perspective for International Human-Robotic Space Exploration

IAC Jerusalem, 12 October 2015

François Spiero (CNES), <u>Jürgen Hill (DLR)</u>, Ben Bussey (NASA), Jean-Claude Worms (ESF), Greg Schmidt (SSERVI)

About ISECG

- ◆ ISECG is a non-political agency coordination forum of 14 space agencies
 - Website: www.globalspaceexploration.org
- Work collectively in a non-binding, consensus-driven manner towards advancing the Global Exploration Strategy
 - Provide a forum for discussion of interests, objectives and plans
 - Provide a forum for development of conceptual products
 - Enable the multilateral or bilateral partnerships necessary to accomplish complex exploration missions
 - Promote interest and engagement in space exploration among citizens and society
- **♦** ISECG operating principles
 - Open and inclusive
 - Flexible and evolutionary
 - Effective
 - Mutual interest

About the Global Exploration Roadmap

- The GER is a human space exploration roadmap, recognizing the criticality of increasing synergies with robotic missions while demonstrating the unique and important role humans play in realizing societal benefits
- The non-binding document reflects a framework for agency exploration discussions on:
 - Common goals and objectives
 - Long-range mission scenarios and architectures
 - Opportunities for near-term coordination and cooperation on preparatory activities
- Since release of updated GER in August 2013, participating agencies have continued discussions and joint work in several areas which are of mutual interest
 - Increase understanding of design reference missions for early mission themes
- Highlighting opportunities for the science community with a dedicated Science White Paper and within the GER itself is a priority

GER Mission Themes

ISECG Interaction with Scientific Communities

- ISECG agencies acknowledge science communities as major stakeholders and scientific knowledge gain as important benefit of exploration activities.
 - Scientists in general support GER and want to engage in the discussion.
- **◆** Several agencies agreed in winter 2014/15 to facilitate interaction
 - ASI, <u>CNES</u>, CNSA, CSA, <u>DLR</u>, ESA, JAXA, NASA, SSAU, UKSA (+ESF, SSERVI)

Objectives

- Coordinate <u>interaction with the science communities</u> on exploration planning and activities as required for the generation of ISECG products
- Advance the development of a <u>Science White Paper</u> for the articulation of science opportunities in the GER in conjunction with the science communities

ISECG Interaction with Scientific Communities

- Interaction with science communities present at major conferences / scientific events
 - e.g. COSPAR 2014, NASA Exploration Science Forum 2014, European Lunar Symposium 2015, European Lunar and Planetary Conference 2015, IAC 2015
- Cross-Exchange between scientific groups and ISECG agencies
 - COSPAR Panel for Exploration:
 - Joint workshop in February 2016 for review/input to Science White Paper
 - Joint session planned at the COSPAR Scientific Assembly in August 2016 to highlight SWP findings
 - International Space Life Sciences Working Group (ISLSWG) inputs already reflected in GER2

Science White Paper – Concept & Scope

Describe an international view of the science that could be enabled by human missions in the GER

- Engage the scientific communities in identifying these opportunities
- Target the same stakeholder community as the GER
- Focus on human missions and human/robotic concepts
- Incorporate activities that have feed-forward benefits to Mars exploration

Incorporate interdisciplinary scientific topics that

- Encompass all relevant science communities and disciplines: planetary science, space science, life sciences, astrobiology, astronomy, physical sciences, etc.
- Span all destinations (LEO, cis-lunar space, Moon, asteroids, Mars)
- Incorporate input from the international science communities

Science White Paper – Development Process

 Apply a transparent, interactive process that stimulates discussion on science opportunities in preparation of GER3

SWP Structure

Table of Contents (as of 10/2015) - total ~20 pages

- Scope & Purpose
 - Broad interaction between science communities and ISECG agencies
- Exec. Summary (2)
 - To be written
- ◆ 1. Linkage to GER (2)
 - GER approach
 - Connect to Goals & Objectives
 - Long-term horizon goal (Mars)
 - Near-term destination focus
 - Human-robotic partnership / Value of human presence
- 2. Science Topics (2)
 - Introduce topics
 - Spans all destinations
 - Incl. many scientific disciplines

- 3. Cislunar Deep Space Habitat (4)
- 4. NEA in Cislunar Space (4)
- 5. Lunar Surface (4)
 - Each chapter 3-5 to highlight
 - Short summary of the mission theme including DRMs
 - Scientific opportunities structured by science topics
 - Science findings
- Conclusion (1)
- References (1)
 - E.g. GER2, COSPAR PEX, Decadal Surveys, MEPAG report, ILEWG, others, ...

SWP Science Topics

Living and working in space

- Overarching questions:
 - How do we become a spacefaring species?
 - How do we sustain life outside Earth?
- Disciplines involved, e.g.
 - Human physiology, life sciences and life support
 - Prospecting and utilising local resources

Our place in the universe

- Overarching question:
 - How do terrestrial planets form and evolve?
 - How does life evolve in the planetary environment?
- Disciplines involved, e.g.
 - Astronomy
 - Planetary geology
 - Solar physics, space physics
 - Astrobiology (understanding the building blocks of life)

Science Enabled by Humans to a Cislunar Habitat

- Human-assisted lunar sample return
 - Increased return through more and improved selection of lunar samples
- Construct and/or service large space telescopes
- Understand combined effects of radiation/reduced-gravity/isolation on humans
- Monitor Earth's climate to help design exoplanet observing instrument
- ◆ Facilitate access to challenging regions by low-latency telerobotics (e.g. permanently shadowed crater floors)
 - Telerobotics experience useful for Mars exploration

Science Enabled by Humans to a NEA

Sample return provides key science

- Humans permit careful selection of samples for high sample quality
- Larger sample return mass compared to robotic missions
- Increase the value of the current meteorite collections
- Provide an archive of samples for analyses that must be done on Earth

Increased surface access

- Multiple drilling sites
- Exposure ages at different depths

Instrument deployment

- Placing instruments on the surface enabled by humans
- Long-term instrument deployment

Science Enabled by Humans to the Lunar Surface

- **◆** Sample return provides key science
 - Humans best at identifying scientifically important samples
 - Improve our understanding of impact cratering
 - Provide insight into the evolution of the terrestrial planets
 - Study the history of the Sun
- Understand lunar volatiles
 - Record of the flux and composition of volatiles
 - Help answer astrobiological questions
 - Install and maintain resource utilization equipment (i.e. generate water)
- Emplacement of delicate or large astronomical instruments
- Understand the physiological effects of the lunar environment on human health, contributing to medical benefits on Earth
- Understand how plants and other non-human forms of life adapt to, or can be protected from, the conditions on hostile planetary surfaces
- Feed-forward activities (using the Moon as a gateway to the Solar System)

